python - How to isolate parts of pandas data frame -
i have json contains backtest various assets, have separated assets using following code:
preds = 'test_predictions.json' df = pd.read_json(preds) asset = 'poloniex_doge_btc' grouped = df.groupby('market_trading_pair') print grouped.get_group(asset) #each array should start , end: #start 1446012000 #end 1452556800
now how can truncate 'grouped' starts , ends above timestamps ?
edit:
sorry, here's example of df
market_trading_pair next_future_timestep_return ohlcv_start_date \ 7073 poloniex_doge_btc -0.023256 1445392800 7074 poloniex_doge_btc 0.023810 1445396400 7075 poloniex_doge_btc 0.000000 1445400000 prediction_at_ohlcv_end_date 7073 0.999999 7074 1.000000 7075 -0.999891
using serbitar's answer:
i replaced print grouped.get_group(asset)
with:
print grouped.get_group(asset)[['ohlcv_start_date'> 1446012000 ] & ['ohlcv_start_date'< 1452556800]]
its hard judge if not have example of grouped dataframe. if x starttime , y stoptime try:
grouped[(grouped.timestamp x) & (grouped.timestmap < y)]
you can use between function if have index on timestamps.
Comments
Post a Comment